《圆的面积》教学设计
2016-3-10 14:29:04
教学内容:义务教育课程标准实验教科书第十一册P67-68
教学目标:
1、引导学生推导出圆面积的计算公式,能运用公式灵活的计算,已知圆的半径、直径,求圆的面积。
2、在圆面积公式的推导过程中,通过猜测、观察、对比、发现、尝试等数学方法,探索圆面积的计算公式,培养学生迁移、分析、合作和创新的能力,发展学生的空间观念。
3、使学生感受圆的面积的奥秘,培养学生学习数学的兴趣,并将所学知识运用于生活实际。
教学过程:
一 、创设情境,导入新课。
课件演示:在草地的一个木桩上拴着一只羊,想一想这只羊能吃到草的最大范围在哪里?
师:现在你想提什么数学问题?——揭示课题:圆的面积
二、探索合作,推导公式。
1、认识圆的面积
师出示一个圆片:圆的面积在哪里?请同学们拿出圆片,用手摸一摸,感受一下圆的面积,你想说什么?
出示结语:圆所占平面的大小叫做圆的面积
[设计意图:通过多媒体演示圆的面积让学生在充分直观感知圆面积的基础上,概括出圆面积的意义。]
1、 估算圆的面积
师:圆的面积有多大呢?我们先来估计一下吧.如图所示:以这个圆的半径r为边画一
个小正方形。
提问:小正方形的面积怎样表示?(板书:r2)大正方形的面积又怎样表示?如果用
r来表示大正方形的面积又如何表示?(4 r2)那么,认真观察一下,与大正方形比,
圆的面积与大正方形有什么关系?(老师把学生答案写在黑板上。)
师:很显然,这个圆的面积小于<4 r2.这个估计只能是个大概,要准确地求出圆的面积,
还必须找到科学的方法。
[设计意图:巧设估算圆的面积这个环节 ,使学生对圆面积与r2的倍数关系,获得十分鲜明的表象, 让学生带着悬念去探索推导公式,与后面得出圆面积计算公式后的验证前后呼应,加深学生对圆面积的计算公式的理解和记忆。]
3、积极动脑,讨论推导方法
回忆一下:我们以前学平行四边形、三角形、梯形的面积计算公式时都是用什么方
法推导出来的? ——引导转化
[设计意图:创设问题情境,启发学生回忆平行四边形、三角形和梯形面积计算公式的推导过程。激起学生用旧知探索新知的兴趣,并明确用转化的数学思想方法。]
4、 小组合作,推导公式
师:那圆可转化为哪一个学过的图形呢?小组可以剪一剪、拼一拼,试试看!哪怕是
近似的图形也可以。小组讨论,设计方案。展示在投影仪上并汇报。
师:比较一下,你更喜欢哪一种?为什么?
你们是沿着什么来剪的?为什么要沿着半径来剪呢? (圆的面积与半径有关)。
师:这种思路给了我们很大的启发!按照这种思路拼成的近似的平行四边形你们都很满意了吗?那么有没有什么办法让它的边变得更直呢?再剪几份,你是说把它分得更多份些,是吗?(可以把它分得更多份些)
师:请拿出手中的圆片试着折一折,展开来,看看你折成了几等份?(学生展示并汇报)
如果再折下去可以吗?现在老师就把你们折的这几种方案输入电脑。八等份、十六等份、三十二等份。(课件演示八分法、十六分法、三十二分法的展开图)
师:观察这三种分法,比较一下,同样大小的圆平均分的份数不同,拼出来的图形有什么变化?—— 发现:平均分的份数越多,拼成的图形越接近长方形。
[设计意图:通过小组汇报、采访小组等不同形式,来调动学生的多种感官参与学习,发挥学生的主体作用,培养学生主动探究、互助合作的精神,并通过电脑验证,使学生进一步明确圆可以拼成的近似的长方形,渗透化曲为直的方法。]
三、转化成长方形,研究推出圆面积公式——解决问题
1、设疑:我们沿着半径把圆切开,巧妙地把圆拼成了近似的长方形,现在我们可以利用长方形的面积公式来推导圆的面积公式。今天
下一页
返回列表
返回首页